

Remote sensing: opportunities, challenges & results

Nick Collier Chief Technology Officer

SAGENTIA

A next generation robotics upsurge is underway

Shift from traditional role doing assembly line tasks

To a new unstructured world involving multiple tasks and working alongside humans

Remote sensors for robotics can enable greater flexibility

ROBOBUSINESS

INVEST 🕨 INNOVATE 🕨 IMPLEMENT

3D Image sensors

3D vision systems are now low-cost and simpler to implement

- There are several options for 3D imaging eg structured lighting, scanning LIDAR, stereoscopic imaging, visual SLAM, time of flight (ToF) camera systems
- Each approach has its strengths
- To reduce algorithmic complexity, size and update delay, a ToF camera is rapidly becoming an attractive option

http://commons.wikimedia.org/wiki/File:TOF-Kamera-Prinzip.jpg

Strengths & weaknesses of ToF

Strengths

- High frame rate
- Compact
- Low software complexity
- Works in low and high ambient light

Weaknesses

- Resolution lower than structured light
- Range limited by illumination power and phase wrapping

ToF cameras becoming widely available

- ToF chipsets produced by several semiconductor companies
- ToF cameras using these chips now available from many vendors
- Finding their way into many applications as prices fall and functionality improves (mainly resolution)

- Before we consider forming full 3D maps of the environment there are simpler applications
- Vision systems can use extra dimension to make more robust decisions than those provided by contrast alone

Depth data can greatly simplify image analysis

INVEST 🕨 INNOVATE 🕨 IMPLEMENT

Hyper & multispectral imaging Instruments and applications

Seeing more than Red Green Blue

- Most cameras combine light from across the visible spectrum to form one image
- But we can see more if we
- Take an image from a narrow part of the spectrum of lip
- Repeat for each part of the spectrum that is of interest

ROBO

What is it used for ?

- Anything where changes in spectrum provide information about a process, condition or material presence
- Detecting changes in optical phenomena such as absorption, transmission, scattering, fluorescence, luminescence, interference
- Part inspection and identification
- Crop condition monitoring
- Pollution tracking
- Biomedical diagnostics

http://www.bayspec.com/spectroscopy/ oci-uav-hyperspectral-camera/

- Light source
- Tunable filter or dispersive element or interferometer
- Camera (>128fps best)
- Processor for control of light, tunable element, frame grab and analysis
- Algorithmic interpretation of spectral datacube

Typical systems

- Large satellite
- Airborne
- UAV borne
- Hand held

Aerial http://cubert-gmbh.de/uhd-185-firefly/

- Grating based camera
- VNIR and SWIR
- http://www.hyspex.no/products/

Integrated multi-spectral cameras have entered the market

- IMEC has developed a range of solutions integrating the "light selecting" element with CMOS imagers
- Fabry-Perot filters placed over individual pixels

OBO^CBusiness

- Tradeoff between spatial resolution and number of bands
 e.g. 256x256 with 32 bands
- Technology in wide range of cameras

Imec's mosaic and tiled imager chips

www.bayspec.com

www.ximea.com

4x4 mosaic = 16 bands

Imec's tiled and mosaic approach

546 586 630 nm nm nm CMOSIS CMV2000 534 578 624 nm nm nm 485 522 562 608 nm nm nm nm 600 496 510 548 I 088 pixels nm nm nm 2048 pixels

Imec's mosaic and tiled imager chips, http://www.imec-nl.nl

Tiled – requires imager duplicator behind lens

Mosaic - no duplicator required

Application: smart surgery

Robotically assisted surgery is integrating tools to help surgeons

- Identify tissue structures am I cutting the right thing?
- Identify areas of malignant tissue is it all out?

For example:<u>https://vimeo.com/132097972</u>

- Visualizing blood oxygenation in tissues surrounding tumors "cancer field effect"
- Fluorescent Imaging of stained and unstained tissues

©2015 Intuitive Surgical, Inc

INVEST 🕨 INNOVATE 🕨 IMPLEMENT

Retro-reflective communications

Light-weight, high-bandwidth, low-power

Line of sight optical communication:

- Uses a passive retro-reflective modulator
- High data-rates (0.1 to 1Gb/s)
- Low power requirement at passive reflective end
- Lower power/bandwidth than RF

SRusiness

- Reduces payload and power requirements
- Potential to harvest power from incident beam

INNOVATE IMPLEMENT INVEST

What could it be used for?

 Aerial drones – where weight to power ratio is critical and high data rates are required

e.g. end effectors

Rusiness

- Distributed sensors networks of sensors that communicate with static or mobile base unit. RF comms is often the most power hungry function and a challenge for energy harvesting
- Mobile location where it is challenging to add weight or power

INVEST 🕨 INNOVATE 🕨 IMPLEMENT

Inductive sensing

Non-contact position sensing

Short range inductive position sensing

- Continuous non-contact position sensing in 1 or more dimensions
- Robust and reliable
- Historically large and expensive systems of LVDT etc used in rail and aerospace and costing >\$200
- Modern systems offer much lower cost and design flexibility – reached maturity in automotive market and costing ~\$2
- Based around coils on printed circuit boards

Rusiness

Position encoded in shape of coils

Application areas

- Low cost joint position sensing
- Curvilinear path sensing
 e.g. position along a conveyor
- Simultaneous identification and location
 e.g. exchangeable tools

Cutlass robot by Remotec

INVEST 🕨 INNOVATE 🕨 IMPLEMENT

EM position sensing

Long range EM position sensing

- Non-contact position sensing in freespace (6Dof)
- Unconstrained motion flexible robotics
- Avoids calculating position via angle of many rigid linkages
- Avoids need to compensate for compliance (droop) in system
- Low-cost systems from gaming industry short range lower accuracy
- Higher performance from medical industry

ROBO³ Business

Example technologies

AC electromagnetic

Measure strength and direction of AC field

Pros: high accuracy
Cons: short range (<1m)</pre>

RF Pseudolite

GPS like solutions Time of arrival and signal strength

Pros: range (km)

Cons: multipath and calibration

Large scale inductive

Phase measurement

Pros: Large areas (10m)

Cons: Antennas are size of area covered

Application areas

- Location of end effector in flexible robotics.
 The classic example are catheters used in robotically assisted surgery
- Human augmentation in cutting, welding, painting
- Location of mobile robots

INVEST 🕨 INNOVATE 🕨 IMPLEMENT

Tactile feedback

Robust low-cost tactile sensing for haptics

- Human augmentation requires us to find the right interface to our machines – using our senses
- Example is restoring the sense of touch in surgery
- Faithful reproduction of touch is expensive and hard to achieve in robust devices
- Alternative is to use human's ability to learn the dynamics – we are good at this
- This solution uses encoders already present in the control system

- What if we could digitally transmit, share and analyse the sensation of touch and texture to the finger tips?
- Simple, accelerometer and voice coil solutions provide accurate, low cost solutions
- Applicability in teleoperation, robotic surgery, consumer care

Summary

- There are many sensor technologies available to robotics
- As we move into less structured environments these become crucial
- Many components of these sensor technologies are entering maturity
- There remains the need to integrate them into each specific application, understanding the performance and cost tradeoffs
 ROBOFBusiness INVEST > INNOVATE > IMPLEMENT

Thank you Any questions?

Nick.Collier@sagentia.com