
Medical devices: the shift from
embedded to connected

Software architects in the medical
device industry have never had it easy.
Delivering innovation within a rigorous
regulatory environment is no mean feat.
This is compounded in the digital age:
connected devices offer much potential,
but they cannot be fully isolated from
external risks. In this paper, Paulo
Pinheiro and Anthony Hayward share
five fundamental principles to mitigate
risk and maximise opportunity in a
connected world.

Driving advancements in medical devices for the
benefit of patients can be inherently problematic. On
the one hand, manufacturers are striving for seamless,
frequent throughput of new products and product
updates. On the other, their work must gain regulatory
approval. In the digital age, the latter is increasingly
complex, encompassing cybersecurity as well as user
and patient safety. And this raises new challenges for
medical device software architects.

Unfortunately, the software architecture that gets a
product to market in the shortest timeframe isn’t
necessarily one that regulators will accept. It takes
experience, detailed market & regulatory understanding
and skill to develop a solution that marries regulatory
approval with speed of delivery.

The rise of connectivity and commodity software
presents a wealth of opportunity, but it’s a double-
edged sword. With discrete, unconnected devices,
software code is embedded and contained within a
single functional unit. It’s possible to own end-to-end
code development and control risk with a top-down
approach. But with connected devices, graphical user
interfaces (GUIs), web apps and mobile apps, there are
multiple owners with distinct business, operational
and regulatory concerns.

You can’t have complete control in this environment.
So, you have to weigh up the options. There is a huge
range of off-the-shelf software components available
that could accelerate development of a medical device,
provided by major vendors like Microsoft and Oracle,

a science group company

Five principles to help software architects walk the
line between opportunity and threat
By Paulo Pinheiro and Anthony Hayward, from the Electronics, Software & Systems group at Sagentia

one-developer open source projects and every kind of
provider in-between. These components are SOUP
(software of unknown provenance) as they have not
been developed to medical standards. Can you safely
use them in your device? Can you afford not to use
them, and incur the cost and risk of building everything
from scratch?

Most software architects need to use all three options
to some extent. The secret is to understand when it is
appropriate and beneficial to leverage third party
software, while controlling the associated risks.

 So, what does it take to achieve this?

	� Upfront decisions are critical:
be informed and prudent

Front end software architecture choices are always
important, but especially so in the medical device
sector. Decisions don’t just impact market success.
Selecting the wrong operating system or programming
language could greatly reduce the chances of
regulatory approval and therefore market entry.

Consider the potential risks attached to a surgical tool
control system. If architected in a non-real-time
operating system, it is unlikely to be approved. Should
it freeze, it could have consequences impacting life.

This is an extreme example to underline an important
and complex point. The software architect has to
choose various technologies, from programming
languages and operating systems to databases, data/
information exchange protocols and potentially cloud/
hosting options. They must make these selections
knowing there is no perfect choice, only a defensible
choice. Regulation, software longevity, safety,
cybersecurity and usability all need to be considered.
And the final decision has to balance the benefit of
harnessing available, ubiquitous technology with the
safety/control of bespoke, tightly guarded code.

	 Safety is king:
	 embrace risk-based decisions
Reconciling the apparently opposing forces of
innovation and safety demands a risk-based approach
to software architecture. Medical standard IEC 62304
has an A / B / C classification system for medical
device software, based on potential hazard(s) that

could cause injury to the user or patient. The architect
needs to deconstruct system architecture and
segregate it so that each software item/unit can be
classified appropriately. This enables architects to take
advantage of well-tested, ubiquitous software for some
parts of the system while deploying higher levels of
safety and control in others, such as ‘class C’ elements
where death or serious injury is possible.

Documentation is an important aspect of risk-
management. For us as a consulting organisation this
is critical, because clients can’t properly review an
architecture unless we document it effectively.
Traceability for segmentation based on the A / B / C
software classification, and a clear outline of which
part of the system performs which function, is
essential. The hierarchy and risk case for each
technology selection also needs to be covered, with a
robust rationale explaining how risk is managed. For
example, certain functions, such as device
configuration, upgrade or calibration, might only be
used in the absence of a patient. By design, these
cannot be inadvertently activated during treatment and
therefore a different risk profile would apply.

1.

2.

IEC 62304

The international standard IEC 62304 applies to
the development and maintenance of medical
device software when software is a medical
device in itself, used as a component or accessory
of a medical device or used in the production of a
medical device.

It requires manufacturers to classify software
based on its potential to create a hazard that
could result in injury:

- 	� Class A: No injury or damage to health is
possible

-	 Class B: Nonserious injury is possible

-	 Class C: Death or serious injury is possible

3.

In many ways future
proofing is oxymoronic.
You can never be sure
that choices made today
will seem ideal a decade
from now.

	 Future proofing: consider how your
	 decisions will stand the test of time
In many ways future proofing is oxymoronic. You can
never be sure that choices made today will seem ideal
a decade from now. This is another area where medical
device software differs from standard software; the
time horizons are much longer. Nobody expects
individual consumer devices – phones, wearable tech,
apps – to be in use ten years hence. These products
generally follow a three-to-five-year obsolescence
cycle at most. Yet time horizons for medical products
can extend to ten or even 20 years. In this environment,
the software architect needs to distinguish between
fads and more significant trends, while allowing scope
for future development.

There is no perfect way of doing this but there are
some key principles:

	 -	 �Beware lock-in: proprietary software (generally
delivered by small, specialist or niche vendors) can
be extremely limiting, even if it claims to solve 90%
of current problems. Some vendors and
consultancies tie clients into IP-encumbered
technology stacks. If you follow this path, future
development of your own product may be curtailed,
as you will be dependent on the third-party
upgrade path and product investment.

	 -	 �Look for standards-based and open source:
when you’ve decided which parts of your
architecture can make use of commodity software,
make choices that are as open as possible.
Anything standards-based, in terms of its
technology stack and the data standards it can
read/write, should give you flexibility and support
future development. Try to avoid any unnecessary
bias and be as agnostic as possible in your
technology choices. There may be good reasons to
prioritise some third-party providers (you already
have skills and resources inhouse that support a
certain technology stack, for example) but don’t get
funnelled down a particular route without
considering potential consequences.

	 -	� Assess ubiquity and belief in the software: try to
assess breadth of use, popularity, length of time in
the market and commitment of key industry players
to the technology. This isn’t easy, but you may be
able to find anecdotal evidence through desk
research, networking at industry events or by
talking to colleagues who have worked for other
organisations.

	�

a science group company

	� Usability: think about the impact
of architectural decisions

It’s not just human factors specialists that have to
consider the use or potential misuse of medical
devices. Software architects’ decisions also impact
usability, and can’t be undone down the line, no matter
how talented the UX designer. System performance is
largely dictated by architecture, and this impacts
responsiveness which is critical to an optimal user
experience. Similarly, architectural decisions influence
robustness, which has ramifications for both ease of
use and safety.

A system’s GUI also has to be assessed for usability
and compatibility with the wider architecture. The
needs of various user groups, and the specific
interfaces they will be exposed to, should be carefully
considered. A clinician’s requirements will be quite
different to those of maintenance staff and
manufacturers. Even software developers and testers
expect a good user experience.

Another important consideration is the platform on
which these end users might access the system.
Sometimes our clients forget that when we verify the
software, we have to do it on a given platform. But even
a straightforward phone application has to account for
device fragmentation such as different screen sizes
and resolutions, different hardware platforms and
different versions of the operating system.

When functional features can be impacted by the
platform into which the software is deployed, you have
to think very carefully about usability. Take a system
which displays information to users in real-time. What
happens if it’s deployed on a hospital PC which doesn’t
have a real-time operating system? How do you avoid
users assuming they are working with the latest data
when in fact the machine froze some time earlier? This
was in fact a real scenario encountered by one of our
clients. We solved it by placing a clock on the screen at
all times, so users could immediately detect when the
system had frozen, as well as receiving an alert when it
unfroze. Sometimes an architectural consideration
(need for a real-time operating system) is impacted by
an environmental reality (you can’t mandate the
machine), and therefore the GUI design has to
compensate.

	 Software security:
	 build it from ground up
Connected medical devices are inevitably exposed to
cyberthreats. In this complex environment, people,
devices, software and services interact with the
support of globally distributed physical information
and communication technology.

Since the FDA first introduced guidance in 2014,
effective cybersecurity has been a necessary
requirement for any medical device using wireless,
internet and network connections to exchange health
information. This guidance was updated in 2018 to
include recommendations for device design, labelling
and documentation for premarket submissions of
medical devices with cybersecurity risk.

There are well-established risk management
frameworks (such as NIST 800-30) for conventional IT

4. 5.

Cybersecurity is a major
concern. It needs to be
front of mind at the outset
when an architect is
selecting third party
software, and throughout
the development cycle.

systems. Yet it’s widely recognised that little guidance
is available for managing cybersecurity risks of medical
devices. In 2016, the Association for the Advancement
of Medical Instrumentation (AAMI) took a welcome
step, moving medical device manufacturers towards a
coherent security risk management framework. The
Association’s report TIR57:2016 Principles for medical
device security – risk management provides guidance
on managing the risks associated with security threats
and the impact of these risks on data, confidentiality,
integrity and device availability.

The recommendation is that manufacturers establish a
companion security risk management process
alongside existing ANSI/AAMI/ISO 14971-based
safety risk management processes. Safety risk involves
evaluating the probability and severity of a hazard
leading to harm. Security risk, however, assesses the
likelihood that a threat will successfully exploit a device
vulnerability. An event of this nature could compromise
system confidentiality, integrity, and/or availability.

Finally, device submissions to the FDA may now
leverage testing and declarations of conformity to UL

2900-2-1 to streamline product review. The FDA’s 2017
recognition of UL 2900-2-1 provides manufacturers
and developers with tools to meet its evolving
expectations for medical device cybersecurity risk
mitigation.

Manufacturers are advised to:

- 	� employ a risk-based approach to the design and
development of medical devices with appropriate
cybersecurity protections based on ISO 14971

- 	� take a holistic approach to device cybersecurity by
assessing risks and mitigations throughout the
product’s lifecycle

- 	� create an architecture capable of addressing the
cybersecurity design recommendations in the FDA
guidance: Identify and Protect, Detect, Respond,
Recover.

In the face of rapidly evolving cybercrime, regular
security upgrades will be required to mitigate
emergent threats. Given the expected lifespan of many
medical devices, it is vital that they are architected with
this as a primary capability.

a science group company

 Conclusion: striking the right balance

Medical device software architects make the early, big
decisions: from defining the technological framework
and identifying selections that need to be made, to
choosing the technology set. Upfront architectural
choices impact all subsequent work, and have a
significant bearing on whether a project completes
on-time and on-budget, or overruns incurring major
costs and inconvenience.

In the digital age, medical devices need to make the
most of connectivity, while mitigating associated risks.
Delivering better outcomes without losing sight of
safety and security requires a high level of pragmatism
and awareness. The five principles outlined here
represent a risk-compass, helping software architects
make defensible decisions and confidently walk the line
between threat and opportunity. Ultimately, they
underpin an efficient, progressive and responsible
approach to medical device development.

a science group company

Dr Paulo Pinheiro is Head of
Electronics, Software and
Systems at Sagentia.
Paulo has extensive experience
in delivering projects ranging
from automated machinery to
embedded products in a wide
range of regulated industries.

He is both an experienced project manager and a
software team leader. Paulo brings an extra dimension
to his projects through his extensive hands on
development experience which leads to successful
project delivery.

Dr. Anthony Hayward is a
 Senior Consultant in the
Electronics, Software and
Systems group at Sagentia.
Ant has over 10 years’
experience in enterprise
software architecture,
development and

implementation. He is a lead software architect and
engineer and has worked on a number of major
medical system developments including for high-
performance genomics software. Prior experience
included architecting an integrated e-commerce
system for major UK retailers with web, mobile and
batch processing aspects. He also worked across a
number of other industries including public
transportation and government systems.

Biographies

Sagentia Ltd
T. +44 1223 875200 	

info@sagentia.com
www.sagentia.com

Sagentia Inc
T. +1 650 931 2585

a science group company

